Tutorial plugin system

forma.lms

Introduction

In this tutorial I will explain you how to pluginize (convert into
a plugin) a functionality of forma.lms. Firstly let’s understand
how the main classes (PluginManager and PluginAdm) work.

PluginAdm

PluginAdm is the class used to manage the
method of each plugin. The main methods is:

getPlugins($onlyActive =)
It returns an containing all the plugins, if $onlyActive is
set to it returns only active plugins.

All the other functionalities are not called inside forma.lms
(except for the installPlugin method called inside the installer)

PluginManager

PluginManager is the class used by forma.lms to load the plugins
features. It has this

__construct($category)
Given a category Scategory it initialize the instance.

You can load or run plugins using these methods of an instance of
the PluginManager class.

run plugin($plugin, $method, $parameters =)
Given a plugin name Splugin and a method Smethod it runs the static
method of the specified plugin of the category set into the
constructor. You can specify parameters passing 1t through

Sparameters.

run($method, $parameters =)
Given a method Smethod it runs all the static method of the category
set into the constructor. You can specify parameters passing it
through Sparameters.

get_plugin($plugin, $parameters =)
Given a plugin $plugin it returns an instance of the specified
plugin of the category set into the constructor passing Sparameters
into its constructor.

Plugin structure

A plugin is composed by three main type of file:

- Plugin.php: contains the callback that are executed during
installation and activation.

- manifest.php: contains the information of the plugin, the
most important parameter is <name> because it must be the
same as the folder name or forma.lms will not read the
plugin.

- CATEGORY NAME.php: A plugin can have multiple category
files: one for each functionality it is extended.

First Example

We will try to pluginize the learning object (LO) functionality of
forma.lms.

Inside html/applms/class.module/class.organization.php in the
class Organization Module we can see that inside each “controller”
(I mean the different actions inside the) of the method
loadBody there is a function used to get the instance of the
specified LO: createlO.

html/applms/lib/lib.module.php
createlO($objectType, $idResource = , Senvironment =)
Inside we can see a query in which we get the name of the file
containing the class of the specified LO (inside $objectType) .

= "SELECT className, fileName FROM %1lms lo types WHERE

wormn .,
. ’

Then the file is included and it is created a new instance.

require once .'"/../class.module/learning.object.php’
if
'/customscripts/"'. .'"/class.module/"'.

g ('enable customscripts', false) == true) {

.'/class.module/"'.

.'/class.module/"'.

In first place we don’t need a table no more. We will search for
the LO directly from the active plugins. Secondly we don’t need to
check i1if folders exists and include files because the plugin
manager handles this for us. So the final code will be:

PluginManager ('lo"') ;
->get plugin

Now we can proceed in converting every single LO into a plugin. In
this example we will pluginize the htmlpage object. Let’s create
the manifest.xml file.

<?xml version="1.0" encoding="UTF-8"?2>
< >
>HTML Page</ >
>Tutorial</ >

>htmlpage</ >
>1.0</ >
>lo</ >
>HTML Page LO plugin</
>

O 0 J o U WN P

Now let’s create the Plugin.php file.

Plugin\htmlpage;
"IN FORMA") « die ('Direct access is forbidden.');
Plugin extends \FormaPlugin {

In order to make the htmlpage LO work, we need to load the table
that it needs to store data. So we will use the install callback
to insert the table in the database. Forma will call this method
each time the plugin is installed.

Plugin\htmlpage;
"IN FORMA") or die('Direct access is forbidden.');
Plugin extends \FormaPlugin {

ion install () {
CREATE TABLE "learning htmlpage (
int (11) PRIMARY KEY AUTO_ INCREMENT,
varchar (150) NOT NULL DEFAULT '',

O J o U WP

text NOT NULL,
int (11) NOT NULL DEFAULT 'Q'

ENGINE=InnoDB DEFAULT CHARSET=utf8 ";
: {

Then we remove the table same when we uninstall the plugin.

e Plugin\htmlpage;
"IN FORMA") or die('Direct access is forbidden.');
cl Plugin extends \FormaPlugin {

public function install () {
=" CREATE TABLE "learning htmlpage (
int (11) PRIMARY KEY AUTO INCREMENT,
varchar (150) NOT NULL DEFAULT '',
text NOT NULL,
int (11) NOT NULL DEFAULT '0O'
) ENGINE=InnoDB DEFAULT CHARSET=utf8 ";
sgl query {

O J oy U1 b WP

return true;
}
return fa
public function uninstall () {
'DROP TABLE IF EXISTS "learning htmlpage” ";
return true;

urn fa

The last file that we have to create is the file that will contain
all the features of LO. We call it lo.php.

The class that manage the htmlpage learning object is

Learning Htmlpage located in
applms/class.module/learning.htmlpage.php. We have to copy all the
methods inside our newly created lo.php file.

e Plugin\htmlpage;

s lo extends \FormaPlugin {

We have to do some fix to the code, for example check that the
namespace 1s correct (we are in Plugin\htmlpage) and the name of
the construct method is updated.

After that go to forma administration (under configuration/plugin
manager and activate the new plugin).

I’'m not including in this tutorial the tracking part, but now if
you try to create a new htmlpage you can see that forma.lms will
use our new plugin.

